Туре	Course Code	Name of Course	L	Т	P	Credit
DP	NCHC510	Advanced Processes Lab	0	0	3	1.5

Course Objective

This laboratory course aims to acquaint postgraduate students with various critical aspects and important tools of decision-making for chemical engineering processes.

Learning Outcomes

Hands-on experience on

- performing techno-economic analysis and life cycle assessment for typical chemical processes,
- applying the different methods of design of experiments for optimizing process conditions,
- using the standard available optimization toolbox capabilities for performing optimization and parameter estimation studies,
- practical control strategies in Multi-input Multi-output chemical engineering systems.

Unit	Topics to be covered	Lecture	Learning Outcomes		
No.					
1.	Techno-economic Analysis&Life Cycle Assessment Selection of a specific process design/sequence among multiple alternatives based on techno-economic analysis Life Cycle Assessment for process flowsheets	12	Performing techno-economic analysis and life cycle assessment for typical chemical processes		
2.	Design of Experiments Applying the concepts of different factors analysis, information criterion etc. on various chemical engineering problems	9	 Applying the different methods of design of experiments for optimizing process conditions 		
3.	Process Optimization Handling Unconstrained and Constrained optimization problems using standard toolboxes —essential for process design Parameter estimation using optimization toolbox for applications in Chemical Engineering problems — constrained & unconstrained nonlinear function Minimization	12	Using the standard available optimization toolbox capabilities for performing optimization and parameter estimation studies		
4.	Process Control Demonstration/experiment with Multi-input Multi-output (MIMO) systems such as distillation columns, absorption columns etc.	9	• Knowing about practical control strategies in MIMO chemical engineering systems		
	Total Contact hours:	42			

Text Books:

1. Klöpffer, W and Grahl B. Life Cycle Assessment (LCA): A Guide to Best Practice. Wiley.

Reference Books:

- 1. Lazic, ZR. Design of Experiments in Chemical Engineering: A Practical Guide. Wiley.
- 2. Edgar, TF and Himmelblau, DM. Optimization of Chemical Processes. McGraw Hill.